
COT 6405 Introduction to Theory of
Algorithms

Topic 13. Dynamic programming

11/23/2015 1

Dynamic Programming (DP)

• Like divide-and-conquer, solve problem by combining
the solutions to sub-problems.

• Divide-and-conquer vs. DP:

– divide-and-conquer: Independent sub-problems

• solve sub-problems independently and recursively, ( so
same sub-problems solved repeatedly)

– DP: Sub-problems are dependent

• sub-problems share sub-sub-problems

• every sub-problem is solved just once

• solutions to sub-problems are stored in a table and used
for solving higher level sub-problems.

2

Overview of DP

• Not a specific algorithm, but a technique (like
divide-and-conquer).

• Doesn’t really refer to computer programming

• Application domain of DP

– Optimization problem: find a solution with the
optimal (maximum or minimum) value

3

Matrix-chain multiplication problem

• Given a chain A1, A2,…, An of n matrices

– where for i = 1,…, n, matrix Ai has dimension pi-1  pi

– fully parenthesize the product A1A2An in a way that
minimizes the number of scalar multiplications.

• What is the minimum number of multiplications
required to compute A1·A2 ·… · An?

• What order of matrix multiplications achieves this
minimum? This is our goal !

4

Matrix-chain multiplication problem

• Consider the problem of a chain {A1, A2 , A3}.

– The dimensions of the matrices are 10×100，
100×5， and 5×50, respectively

• ((A1 A2) A3):

– 10*100*5 +10*5*50 = 7500 scalar multiplications

• (A1 (A2 A3)):

– 100*5*50 +10*100*50 = 75,000 scalar
multiplications

5

A Possible Solution

• Exhaustively checking all possible
parenthesizations

– Not an efficient algorithm at all!

• P(n): the number of alternative
parenthesizations of a sequence of n matrices

– The split may occur between the kth and (k+1)st
matrices for any k = 1, 2, …, n-1

– Ω (2n)

11/23/2015 6








-






-



2)()(

1 1

)(1

1

nifknPkP

nif

nP n

k

Four-step method
1.Characterize the structure of an optimal solution

• Optimal solutions incorporate solutions to subproblems

• The problem must have an optimal structure

2.Recursively define the value of an optimal solution

– Combine solutions to subproblems

3.Compute the value of an optimal solution

– typically in a bottom-up fashion

– Get rid of recurrences

4.Construct an optimal solution from computed
information

– Trace back the solution steps 7

Step 1: Find the structure of an optimal
parenthesization

• Finding the optimal substructure and using it to

construct an optimal solution to the problem based on

optimal solutions to subproblems.

• The key is to find k ; then, we can build the global

optimal solution

((A1A2Ak)(Ak+1Ak+2An))

Both must be Optimal for sub-chain

Then combine them for the original problem

8

Step 2: A recursive solution to define the cost of
an optimal solution

• Define m[i, j]  the minimum number of
multiplications needed to compute the matrix
Ai..j  Ai Ai+1Aj

• Goal: to compute m[1, n]

• Basis: m(i, i) = 0

– Single matrix, no computation

• Recursion: How to define m[i, j] recursively?

– ((AiA2Ak)(Ak+1Ak+2Aj))

9

Step2: Defining m[i,j] Recursively

• Consider all possible ways to split Ai through Aj
into two pieces: (Ai ·…· Ak)·(Ak+1 ·… · Aj)

• Compare the costs of all these splits:

– best case cost for computing the product of the
two pieces

– plus the cost of multiplying the two products

– Take the best one

– m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

11/23/2015 10

Step2: Defining m[i,j] Recursively
(Cont’d)

• m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

11/23/2015 11

B1 B2

((AiA2Ak)(Ak+1Ak+2Aj))

•minimum cost to compute B1 is m(i, k)
•minimum cost to compute B2 is m(k+1, j)
• for i = 1,…, n, matrix Ai has dimension pi-1  pi

•The dimension of B1 is pi-1pk , The dimension of B2 is pkpj

•Therefore, cost to compute B1· B2 is pi-1pkpj

Step 3: Computing the Optimal Cost by Finding
Dependencies Among Subproblems

• m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

• k ranges between i and j-1

• Computing m[i,j] uses k = i, i+1, i+2,…,j-1

• m[i,k] : m[i,i], m[i,i+1], …, m[i,j-1]

• m[k+1,j] : m[i+1,j], m[i+2,j],…,m[j,j]

11/23/2015 12

13

Step 3: Computing the Optimal Cost by Finding
Dependencies Among Subproblems (cont’d)

1 2 3 4 5

1 0

2 n/a 0

3 n/a n/a 0

4 n/a n/a n/a 0

5 n/a n/a n/a n/a 0

GOAL: m(1,5)

m[]

 m[i,i], m[i,i+1], …, m[i,j-1]: everything in same row to the left

 m[i,j], m[i+1,j],…,m[j,j]: everything in same column below:

Identify Order for Solving Subproblems

• Solve the subproblems (i.e., fill in the table
entries) along the diagonal

11/23/2015 14

14

1 2 3 4 5

1 0

2 n/a 0

3 n/a n/a 0

4 n/a n/a n/a 0

5 n/a n/a n/a n/a 0

An example

11/23/2015 15

1 2 3 4

1 0 1200

2 n/a 0 400

3 n/a n/a 0 10000

4 n/a n/a n/a 0

m[1,2] = A1A2 : 30X1X40 = 1200,
m[2,3] = A2A3 : 1X40X10 = 400,
m[3,4] = A3A4: 40X10X25 = 10000

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

An example (cont’d)

11/23/2015 16

1 2 3 4

1 0 1200 700

2 n/a 0 400

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,3]: i = 1, j = 3, k = 1, 2
= min{ m[1,1]+m[2,3]+p0*p1*p3, m[1, 2]+m[3,3]+p0*p2*p3}

= min{0 + 400 + 30*1*10, 1200+0+30*40*10} = 700

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

An example (cont’d)

11/23/2015 17

1 2 3 4

1 0 1200 700

2 n/a 0 400 650

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[2,4]: i = 2, j = 4, k = 2, 3
= min{ m[2,2]+m[3,4]+p1*p2*p4, m[2, 3]+m[4,4]+p1*p3*p4}

= min{0 + 10000 + 1*40*25, 400+0+1*10*25} = 650

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

An example (cont’d)

18

1 2 3 4

1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10000

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,4]: i = 1, j = 4, k = 1, 2, 3
= min{ m[1,1]+m[2,4]+p0*p1*p4, m[1,2]+m[3,4]+p0*p2*p4,

m[1,3]+m[4,4]+p0*p3*p4}

= min{0+650+30*1*25, 1200+10000+30*40*25, 700+0+30*10*25}
= 1400

m[i,j] = mink{ m[i,k] + m[k+1,j] + pi-1pkpj }

19

Step 3: Keeping Track of the Order

• We know the cost of the cheapest order, but

what is that cheapest order?

– Use another array s[]

– update it when computing the minimum cost in the

inner loop

• After m[] and s[] are done, we call a recursive

algorithm on s[] to print out the actual order

20

Example

m[] 1 2 3 4

1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10,000

4 n/a n/a n/a 0

1

2

3

1

3

1s[]

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

keep track of cheapest split point found so far: between Ak and Ak+1

An example

11/23/2015 21

1 2 3 4

1 0 1

2 n/a 0 2

3 n/a n/a 0 3

4 n/a n/a n/a 0

m[1,2] = A1A2 : 30X1X40 = 1200, s[1,2] = 1

m[2,3] = A2A3 : 1X40X10 = 400, s[2,3] = 2

m[3,4] = A3A4: 40X10X25 = 10000, s[3,4] = 3

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

An example (cont’d)

11/23/2015 22

1 2 3 4

1 0 1 1

2 n/a 0 2

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,3]: i = 1, j = 3, k = 1, 2
= min{ m[1,1]+m[2,3]+p0*p1*p3, m[1, 2]+m[3,3]+p0*p2*p3}

= min{0 + 400 + 30*1*10, 1200+0+30*40*10} = 700
m[1,3] is the minimum value when k = 1, so s[1,3] = 1

An example (cont’d)

11/23/2015 23

1 2 3 4

1 0 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[2,4]: i = 2, j = 4, k = 2, 3
= min{ m[2,2]+m[3,4]+p1*p2*p4, m[2, 3]+m[4,4]+p1*p3*p4}

= min{0 + 10000 + 1*40*25, 400+0+1*10*25} = 650
m[2,4] is the minimum value when k = 3, so s[2,4] = 3

An example (cont’d)

24

1 2 3 4

1 0 1 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 is 30x1

A2 is 1x40

A3 is 40x10

A4 is 10x25

p0 = 30, p1 = 1

p2 = 40, p3 = 10

p4 = 25

m[1,4]: i = 1, j = 4, k = 1, 2, 3
= min{ m[1,1]+m[2,4]+p0*p1*p4, m[1,2]+m[3,4]+p0*p2*p4,

m[1,3]+m[4,4]+p0*p3*p4}

= min{0+650+30*1*25, 1200+10000+30*40*25, 700+0+30*10*25}
= 1400
m[1,4] is the minimum value when k = 1, so s[1,4] = 1

Step 4: Using S to Print Best Ordering
(cont’d)

25

1 2 3 4

1 0 1 1 1

2 n/a 0 2 3

3 n/a n/a 0 3

4 n/a n/a n/a 0

A1 A2 A3 A4

s[1,4] = 1 - > A1 (A2 A3 A4)

s[2,4] = 3 - > (A2 A3) A4

A1 (A2 A3 A4) -> A1 ((A2 A3) A4)

Step 3: Computing the optimal
costs

MATRIX-CHAIN-ORDER(p)
1 n = length[p] -1
2 Let m [1..n, 1..n] and s[1.. n-1, 2..n] be new tables
3 for i = 1 to n
4 m[i, i] = 0
5 for l = 2 to n
6 for i = 1 to (n - l + 1)
7 j = i + l - 1
8 m[i, j] = 

9 for k = i to (j - 1)
10 q = m[i, k] + m[k + 1, j] + pi-1pkpj

11 if q < m[i, j]
12 m[i, j] = q
13 s[i, j] = k
14 return m and s

Complexity: O(n3) Space: (n2)
26

27

Step 4: Using S to Print Best Ordering

Print-Optimal-PARENS (s, i, j)

if (i == j) then

print "A" + i //+ is string concatenation

else

print “(“

Print-Optimal-PARENS (s, i, s[i, j])

Print-Optimal-PARENS (s, s[i, j]+1, j)

Print ")"

 s[i,j] is the split position for AiAi+1…Aj  Ai…As[i,j] and
As[i,j]+1…Aj

 Call Print-Optimal-PARENS(s, 1, n)

An example

11/23/2015 28

A1 A2 A3 A4 A5 A6

s[1,6] = 3 - > (A1 A2 A3) (A4 A5 A6)

s[1,3] = 1 - > A1 (A2 A3)

s[4,6] = 5 -> (A4 A5) A6

(A1 A2 A3) (A4 A5 A6) -> ((A1 (A2 A3))((A4 A5) A6))

16.3 Elements of dynamic
programming

• Optimal substructure
– a problem exhibits optimal substructure if an optimal solution to

the problem contains within its optimal solutions to
subproblems.

– Example: Matrix-multiplication problem

• Overlapping subproblems
– The space of subproblems is “small” in that a recursive

algorithm for the problem solves the same subproblems over
and over.

– Total number of distinct subproblems is typically polynomial in
input size

• Reconstructing an optimal solution

29

Follow a common pattern in discovering
optimal substructure

1. We show that a solution to the problem consists of
making a choice. Making this choice leaves one or more
subproblems to be solved.

2. We suppose that for a given problem, we are given the
choice that leads to an optimal solution.

3. Given this choice, we determine which subproblems
ensue and how to best characterize the resulting space
of subproblems.

4. We show that the solutions to the subproblems used
for the optimal solution to the problem must be
optimal by using a “cut-and-paste” technique.

30

31

Characterize Subproblem Space

• Try to keep the space as simple as possible

• In matrix-chain multiplication, subproblem
space A1A2…Aj will not work

– A1A2…Ak and Ak+1A2…Aj  not a single form
A1A2…Ak

– The second subproblem does not start from 1

• Instead, AiAi+1…Aj (vary at both ends) works.

Optimal substructure varies across
problem domains in two ways

1. how many subproblems are used in an optimal solution
to the original problem, and

2. how many choices we have in determining which
subproblem(s) to use in an optimal solution

3. Example: Matrix multiplication problem: (j-i) choices, 2
subproblems

• DP solve the problem in bottom-up manner

32

33

Running Time for DP Programs

• # of overall subproblems  # of choices

– In matrix-chain multiplication, O(n2)  O(n) = O(n3)

• The cost = costs of solving subproblems + cost of
making the choice

– In matrix-chain multiplication, the cost of a choice k is
pi-1pkpj.

Optimal structure may not exist

• We cannot assume it when it is not there
• Consider the following two problems. in which we are given a

directed graph G =(V,E) and vertices u, v V

– P1: Unweighted shortest path (USP)

• Find a path from u to v consisting of the fewest edges.
Good for Dynamic programming.

– P2: Unweighted longest simple path (ULSP)

• A path is simple if all vertices in the path are distinct

• Find a simple path from u to v consisting of the most
edges. Not good for Dynamic programming.

34

DP is good to find shortest path

• Given a shortest path from u to v, there must
exist an intermediate vertex w, so that we can
decompose the path u v to u w and w v

– where both u  w and w  v are both (optimal)
shortest paths

– Another path u  w cannot be an optimal
solution otherwise, cut-and-paste

u
w

v

35

DP is not good to find Unweighted longest
simple path

• Path q →r→t is a longest simple path from q to t, but the
subpath q → r is not a longest simple path from q to r
(should be q → s → t → r)
– nor is the subpath r → t a longest simple path from r to t

(should be r → q → s → t).
q r

s t

 However, when we combine the longest simple path
q → s → t → r and r → q → s → t, we get q → s → t →
r → q → s → t which is not simple.

36

Overlapping Subproblems
• Second ingredient: an optimization problem

must have for DP is that the space of
subproblems must be “small”, in a sense that

– A recursive algorithm solves the same
subproblems over and over, rather than
generating new subproblems.

– The total number of distinct subproblems is
polynomial in the input size

– DP algorithms use a table to store the solutions to
subproblems and look up the table in a constant
time

37

Overlapping Subproblems (Cont’d)

• In contrast, a problem for which a divide-and-
conquer approach is suitable when the
recursive steps always generate new problems
at each step of the recursion.

• Examples: Mergesort and Quicksort.

– Sorting on smaller and smaller arrays (each
recursion step work on a different subarray)

11/23/2015 38

39

A Recursive Algorithm for Matrix-Chain Multiplication

RECURSIVE-MATRIX-CHAIN(p,i,j), called with(p,1,n)

1. if (i ==j) then return 0

2. m[i,j] = 

3. for k= i to (j-1)

4. q = RECURSIVE-MATRIX-CHAIN(p,i,k)

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j) + pi-1pkpj

5. if (q < m[i,j]) then m[i,j] = q

6. return m[i,j]

The running time of the algorithm is O(2n).

The recursion tree

for k= i to (j-1)

q = RECURSIVE-MATRIX-CHAIN(p,i,k)

+ RECURSIVE-MATRIX-CHAIN(p,k+1,j) + pi-1pkpj

11/23/2015 40

RECURSIVE-MATRIX-CHAIN(p,1,4)

i =1, j = 4, k = 1, 2, 3 (i to j-1)

needs to solve (1, k) (k+1, 4)

k = 1 - > (1, 1) (2, 4)

k = 2 - > (1, 2) (3, 4)

K = 3 -> (1, 3) (4, 4)

41

•

Recursion tree of RECURSIVE-MATRIX-
CHAIN(p,1,4)

 This divide-and-conquer recursive algorithm solves the
overlapping problems over and over.

 DP solves the same subproblems only once

 The computations in darker color are replaced by table look
up in MEMOIZED-MATRIX-CHAIN(p,1,4).

 The divide-and-conquer is better for the problem which
generates brand-new problems at each step of recursion.

43

General idea of Memoization

• A variation of DP

• Keep the same efficiency as DP

• But in a top-down manner.

• Idea:

– When a subproblem is first encountered, its solution needs to
be solved, and then is stored in the corresponding entry of the
table.

– If the subproblem is encountered again in the future, just look
up the table to take the value.

44

Memoized Matrix Chain

LOOKUP-CHAIN(p,i,j)

1. if m[i,j]< then return m[i,j]

2. if (i ==j) then m[i,j] =0

3. else for k= i to j-1

4. q=LOOKUP-CHAIN(p,i,k)+

5. LOOKUP-CHAIN(p,k+1,j) + pi-1pkpj

6. if (q< m[i,j]) then m[i,j] = q

7. return m[i,j]

45

DP VS. Memoization

• MCM can be solved by DP or Memoized algorithm,
both in O(n3)

– Total (n2) subproblems, with O(n) for each.

• If all subproblems must be solved at least once, DP is
better by a constant factor due to no recursive
involvement as in memorized algorithm

• If some subproblems may not need to be solved,
Memoized algorithm may be more efficient

– since it only solve these subproblems which are definitely
required.

Longest Common Subsequence (LCS)

• DNA analysis to compare two DNA strings

• DNA string: a sequence of symbols A,C,G,T

– S =ACCGGTCGAGCTTCGAAT

• Subsequence of X is X with some symbols left out

– Z =CGTC is a subsequence of X =ACGCTAC

• Common subsequence Z of X and Y: a subsequence of X and also a

subsequence of Y

– Z =CGA is a common subsequence of X =ACGCTAC and Y =CTGACA

• Longest Common Subsequence (LCS): the longest one of common

subsequences

– Z' =CGCA is the LCS of the above X and Y

• LCS problem: given X = <x1, x2,…, xm> and Y = <y1, y2,…, yn>, find their LCS

46

LCS Intuitive Solution – brute force

• LCS problem: given X = <x1, x2,…, xm> and Y =
<y1, y2,…, yn>, find their LCS

• List all possible subsequences of X, check
whether they are also subsequences of Y, keep
the longer one each time.

• What is the run-time complexity?

• Each subsequence corresponds to a subset of
the indices {1,2,…,m}, there are 2m

47

LCS DP step 1: Optimal Substructure
• Characterize optimal substructure of LCS

• Theorem 15.1: Xm= <x1, x2,…, xm>, Yn= <y1, y2,…,yn>,

let Zk = <z1, z2,…, zk> be any LCS of Xm and Yn

1.if xm == yn, then zk=xm=yn, and Zk-1 is the LCS of Xm-1 and Yn-1

2.if xm yn, then zk  xm implies Zk is the LCS of Xm-1 and Yn

3. if xm yn, then zk  yn implies Zk is the LCS of Xm and Yn-1

48

Optimal Substructure

• if xm yn , we have four cases if xm yn

• zk  xm and zk  yn

• zk  xm and zk = yn

• zk  yn and zk  xm

• zk  yn and zk = xm

• The four cases can be reduced to two cases

11/23/2015 49

zk  xm

zk  yn

LCS DP step 2: Recursive Solution

• What the theorem says:

– If xm== yn, find LCS of Xm-1 and Yn-1, then append xm

– If xm  yn, find (1) the LCS of Xm-1 and Yn and (2) the
LCS of Xm and Yn-1; then, take which one is longer

• Overlapping substructure:

– Both LCS of Xm-1 and Yn and LCS of Xm and Yn-1 will
need to solve LCS of Xm-1 and Yn-1 first

• c[i,j] is the length of LCS of Xi and Yj
c[i,j]= 0 if i = 0, or j = 0

c[i-1, j-1] + 1 if i, j >0 and xi = yj

max{ c[i-1,j], c[i,j-1] } if i, j >0 and xi  yj

50

LCS DP step 3: Computing the Length of LCS

• c[0..m, 0..n], where c[i,j] is defined as above.

– c[m,n] is the answer (length of LCS)

• b[1..m, 1..n], where b[i,j] points to the table
entry corresponding to the optimal subproblem
solution chosen when computing c[i,j].

– From b[m, n] backward to find the LCS.

51

0 if i=0, or j=0

c[i,j]= c[i-1, j-1] + 1 if i, j >0 and xi = yj

max{ c[i-1,j], c[i,j-1] } if i, j >0 and xi  yj

LCS DP Algorithm

52

LCS Algorithm Running Time

• LCS algorithm calculates the values of each
entry of the array c[m,n]

• So what is the running time?

O(m*n), since each c[i,j] is calculated
in constant time, and there are m*n
elements in the array

53

We’ll see how LCS algorithm works on the
following example: X = ABCB Y = BDCAB.
What is the Longest Common Subsequence
of X and Y?

LCS Example

LCS(X, Y) = BCB

X = A B C B

Y = B D C A B

54

LCS Example (0)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

X = ABCB; m = |X| = 4
Y = BDCAB; n = |Y| = 5
Allocate array c[5,6]

ABCB

BDCAB

55

LCS Example (1)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

for i = 1 to m c[i,0] = 0
for j = 1 to n c[0,j] = 0

ABCB

BDCAB

56

j 0 1 2 3 4 5

LCS Example (2)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0

ABCB

BDCAB

57

LCS Example (3)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0

ABCB

BDCAB

58

j 0 1 2 3 4 5

LCS Example (4)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 0 1

ABCB

BDCAB

59

LCS Example (5)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

000 1 1

ABCB

BDCAB

60

j 0 1 2 3 4 5

LCS Example (6)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0 0 10 1

1

ABCB

BDCAB

61

LCS Example (7)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 1 11

ABCB

BDCAB

62

LCS Example (8)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 1 1 1 2

ABCB

BDCAB

63

LCS Example (10)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

21 1 11

1 1

ABCB

BDCAB

64

LCS Example (11)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 11

1 1 2

ABCB

BDCAB

65

LCS Example (12)

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

ABCB

BDCAB

66

j 0 1 2 3 4 5

LCS Example (13)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1

ABCB

BDCAB

67

LCS Example (14)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1 1 2 2

ABCB

BDCAB

68

LCS Example (15)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

ABCB

BDCAB

69

How to find actual LCS
• So far, we have just found the length of LCS, but not

LCS itself.

• We want to modify this algorithm to make it output
Longest Common Subsequence of X and Y

• Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1].

• For each c[i,j], we can say how it was acquired:

2

2 3

2 For example, here

c[i,j] = c[i-1,j-1] +1 = 2+1=3

70

How to find actual LCS

• Remember that

 So we can start from c[m,n] and go backwards

 Whenever c[i,j] = c[i-1, j-1]+1, remember x[i]

(because x[i] is a part of LCS)

 When i=0 or j=0 (i.e. we reached the beginning),

output remembered letters in reverse order

71





--

+--


otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic

jyixjic
jic

Finding LCS

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B

B C BLCS:

72

j 0 1 2 3 4 5

73

15.8

Summary

• Dynamic programming and where it can be
applied

– Optimal substructure

– Overlapping subproblems

– Four steps to construct a DP AL

74

Greedy Algorithms
• We have learned two design techniques

– Divide-and-conquer

– Dynamic Programming

• Now, the third  Greedy Algorithms

– Optimization often goes through some choices

– Make local best choices  hope to achieve global
optimization

– Many times, this works; Other times, does NOT!

• Minimum spanning tree algorithms

– We must carefully examine if we can apply this
method 75

An activity-selection problem

• Activity set S = {a1, a2, ..., an}

• n activities wish to use a single resource

• Each activity ai has a start time si and a finish time

fi, where 0  si < fi < 

• If selected, activity ai take place during the half-open

time interval [si, fi)

• Activities ai and aj are compatible if the intervals [si,

fi) and [sj, fj) do not overlap

– ai and aj are compatible if si  fj or sj  fi

76

• To select a maximum-size subset of mutually
compatible activities

• Activities sorted in finishing times, e.g.,

• {a3, a9, a11} works, but it is not the Max set

• What is the MAX set? How do we get it?

– {a2, a4, a9, a11}
77

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12

fi 4 5 6 7 8 9 10 11 12 13 14

Activity-selection Problem

Another example

78

• 1st, a dynamic programming solution: we combine
optimal solutions to two subproblems to form an optimal
solution to the original problem

– Select one activity, divide the set into two subsets

– We have n choices; two subproblems: k and (n-k-1)

• 2nd, we then observe that we need only consider one
choice – the greedy choice

– this greedy choice guarantee that one of the subproblems is
empty  so that only one nonempty subproblem remains.

79

Solving Activity-selection Problem in different
methods

Optimal substructure
• Si j is the subset of activities that can

– start after activity ai finishes

– and finish before activity aj starts

– Si j = { ak S: fi  sk < fk  sj }

– f0= 0 and sn+1 = . Then S = S0,n+1, and the ranges for i
and j are given by 0  i, j  n+1

• Define Aij as the maximum compatible set in Sij

– Selecting ak in the optimal solutions generates two
subproblems

– Aij = Aik  {ak}  Akj

– |Aij|= |Aik| +1+ |Akj|

80

A recursive solution

• Define Aij as the maximum compatible set in Sij

– Selecting ak in the optimal solutions generates two
subproblems

– Aij = Aik {ak} Akj

• C[i, j] denoted the size of optimal solution for Sij

81







++




++

<<
ij

jki

ij

Sjkckic

S
jic

jkckicjic

 if}1],[],[{max

 if0
],[

1],[],[],[

Can we do better?

• Can we solve the problem without solving all
the subproblems?

• Intuition: Choose an activity that leaves the
resource available for as many other activities
as possible

• It must finish as early as possible: greedy

82

The greedy choice

• Let Sk ={ai S : si >= fk} be the set of activities

that start after activity ak finishes

• If we make the greedy choice of activity a1 (i.e.,

a1 is the first activity to finish), then S1

remains as the only subproblem to solve.

– Let A1 be the maximum-size subset of mutually compatible

activities in S1

– a1 + A1 must be the maximum compatible set for S

– Is this correct?

12/2/2015 83

Converting a dynamic-programming solution to
a greedy solution

• Theorem 16.1 Consider any nonempty subproblem Sk, and let
am be the activity in Sk with the earliest finish time: fm = min

{ fx : ax  Sk}. Then am is used in some maximum-size subset of
mutually compatible activities of Sk

• Let Ak be the maximum-size subset of mutually
compatible activities in Sk

• Let aj be the activity in Ak with the earliest finish time

• If aj == am , we are done.

• Otherwise, A’k = Ak - {aj}  {am}

• We have new Ak with am

84

A recursive top-down greedy algorithm
RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)
// s[] are start times, f[] are finish times
// k is the current subproblem index
// n is the original problem size

1 m = k +1

2 while m ≤ n and sm < fk //Find the first activity in Sk

3 m = m + 1 // right after am

4 if m ≤ n

5 return {am}  RECURSIVE-ACTIVITY-
SELECTOR (s, f, m, n)

6 else return ø // m==n, no better results

85

86

Time 0

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12

fi 4 5 6 7 8 9 10 11 12 13 14

87

An example

• {a1, a4, a8, a11}

11/23/2015 88

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12

fi 4 5 6 7 8 9 10 11 12 13 14

An iterative greedy algorithm
GREEDY-ACTIVITY-SELECTOR(s, f)
1 n = s.length

2 A = {a1}

3 k = 1

4 for m = 2 to n

5 if sm  fk

6 then A = A  {am}

7 k = m

8 return A

89

16.2 Elements of the greedy strategy

• We need make a choice at each step: local best
greedy choice

• Common Steps for greedy Als
1. Determine the optimal substructure of the problem.

2. Develop a recursive solution

3. Show that if we make the greedy choice, then only
one subproblem remains; others are empty

4. Prove that one of the optimal choices is the greedy
choice at any stage of the recursion. Thus, it is
always safe to make the greedy choice.

5. Develop a recursive algorithm to implement it

6. Convert the recursive algorithm to an iterative one 90

Designing a greedy algorithm

1. Cast the optimization problem as one in which we make a
choice and are left with one subproblem to solve.

2. Prove that there is always an optimal solution to the
original problem that makes the greedy choice, so that
the greedy choice is always safe.

3. Demonstrate that, having made the greedy choice, what
remains is a subproblem with the property that if we
combine an optimal solution to the subproblem, we
arrive at an optimal solution to the original problem.

92

knapsack problem

• knapsack problem

– There are n items

– The i-th item has value vi and weight wi

– A thief only can carry W pounds

– Which items should he take?

• 0-1 knapsack problem: take one item or not

• fractional knapsack problem: take fractions

– Greedy choice: max value vi / wi

93

The greedy strategy does not work for
the 0-1 knapsack

• Per unit value: item 1, $6, item 2, $5, item 3,
$4

• Greedy choice will be Item 1

– Optimal solution for 0-1 knapsack: item 2 and
item 3

94

Fractional knapsack problem

95

Summary: ingredients of greedy ALs

• Greedy-choice property: A global optimal
solution can be achieved by making a local
optimal choice.

– Without considering results of subproblems

• Optimal substructure: An optimal solution to
the problem within its optimal solution to
subproblem

96

